If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+28x-53=0
a = 4; b = 28; c = -53;
Δ = b2-4ac
Δ = 282-4·4·(-53)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{102}}{2*4}=\frac{-28-4\sqrt{102}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{102}}{2*4}=\frac{-28+4\sqrt{102}}{8} $
| -36y=9 | | −13.5=2.7s;s | | 3a+3=5(a+5) | | 5x−6=−1x+42. | | 10x+6=7+-9 | | 2(-4m-5)=22 | | -.75=x/24 | | 2c=8.6 | | 2r−15=3 | | (10x+3)+(10x+3)+(3x+24)=180 | | f/5—22=-25 | | 10x+6=7+-6+3 | | -1/3(9x+6)=-3-3x | | x+4=x−1 | | -20+y=-5.2 | | -6=x-4+6 | | 7.50x=6x+7.5 | | 4x^2=15=-9 | | 6+4=-2(7x-5) | | 13x+2=61 | | 3z+5=2z+7 | | 4.6+8.5x=14+12.5x | | m+9.8=-8.7 | | 21-g=42 | | 8x-13=13+2 | | 4(y+7)=28 | | 16.8-m=6m | | 6n+8n=0 | | 3x(2x+4)-7x-20=6x2 | | y+(-8.2)=-4.7 | | 3x(2x+4)-7x-20=6x*6x | | -8m-5-5m=-18 |